DIRECTIVE EFFECTS OF SUBSTITUENTS CH₂X IN AROMATIC ELECTROPHILIC SUBSTITUTIONS

M.C.R. Symons

Department of Chemistry, The University, Leicester, LE1 7RH. (Received in UK 15 November 1971; accepted for publication 24 November 1971)

> Attention has been called to the unsatisfactory nature of the present theory underlying the rate and <u>ortho-para</u> directing effects of positively charged groups such as -PR_3^+ and -AsR_3^+ in compounds of the type O-CH₂-X, towards electrophilic substitution.¹ Because of their positive charges, these groups are expected to be deactivating and <u>meta</u>-directing, as indeed is the case for X = NMe₃⁺, for example. In fact, they strongly favour <u>para</u>-substitution, and the partial rate factors show that they induce a relatively high reactivity in the <u>para</u>-position.

We have found that radicals such as $H_2^{C_*}CH_2(AsEt_3)^+$ and $H_2^{C_*}CH_2(SnEt_3)$ have e.s.r. spectra which are characterised by a very large, almost isotropic hyperfine coupling to the heavy-atom nucleus.³ The magnitude of the β -proton coupling shows that there is a fixed conformation in which the C-X bond is in a plane at right-angles to the radical plane, favouring maximum overlap between the $2p_z$ orbital on carbon and the C-X σ -orbital.³

Greek Beta

Greek Sigma

4919

These results link with kinetic studies on $Ar-CH_2-SnR_3$ and related molecules⁴ which have been interpreted in terms of hyperconjugative electron release from the C-X σ -bond.⁴ I suggest that a similar interaction occurs for $-CH_2PMe_3^+$ and $-CH_2AsMe_3^+$ substituents, <u>despite their</u> <u>positive charges</u>, and that this is primarily responsible for the enhanced sensitivity of the <u>para-position in ArCH_2X</u> compounds. In the Table I quote calculated isotropic spin-densities;⁵ the total delocalisation is generally about three times larger, but the <u>p</u>-contribution is difficult to estimate accurately. There is a clear fall on going from $-SnR_3$ to $-AsR_3^+$, but results for the corresponding silicon compounds seem to suggest that on going from $-SiR_3$ to $-PR_3^+$ there is very little change in the extent of the interaction.

TABLE Isotropic Hyperfine Coupling to Group X in Radicals $R_2^{C-CR_2X}$ together with estimated Spin-Densities (Isotropic) on $X(\underline{a_s}^2)$

Material	Radical	Hyperfine Coupling to X(G)	¹ H Hyperfine Coupling (G)		<u>a</u> 2 <u>s</u> 2
	SnEt	Aiso	Hex	н р	
SnEt ₄	H ₂ C-CH ₂	409	~20	13	5.6
PEt 3	H ₂ C+CH ₂	251	~ 15		6.9
AsEt 3	H ₂ C-CH ₂	230	~15		6.7
AsEt I	^{AsEt} 3 ^H 2 ^{C→CH} 2	126.7	20	14	3.7

The strongly preferred conformation suggests that a considerable stabilisation is achieved by this mechanism

which will, I suspect, outweigh the retarding effect of the charge. -CH₂Hal groups should behave qualitatively in the manner described above. Thus we have found, for chloride, bromide and iodide, in the radicals $R_2^{C-CR_2}$ Hal a large isotropic hyperfine interaction to halogen, which increased through the series, and the same strongly preferred orientation.⁶ In fact, β -Cl, Br, or I groups do have a marked o,p-directing effect.¹

Thus it seems likely that hyperconjugation is indeed involved, but not that involving C+H bonds, as in I, because these are thought to be constrained into a position of poor overlap. Rather, the interaction is thought to involve the C+X bonds, as $H \xrightarrow{C_{H_2}} CH_2$ (III).

The idea that phosphorus 3d - or arsenic 4d-orbitals are involved is rendered most improbable by the results for radicals of general structure $H_2C - PR_3^+$ or $H_2CASR_3^+$. These show virtually no reduction in spin-density on carbon (~100%) and a ^{31}P or ^{75}As hyperfine interaction equal only to that predicted for spin-polarisation of the C-P or C-As σ -electrons. Thus direct evidence shows that in the ground-state of these radicals such interaction is negligible.

References

- F. De Sarlo, G. Grynkiewicz, A. Ricci and J.H. Ridd, J. Chem. Soc. (B), 719 (1971).
- 2. F.L. Riley and E. Rothstein, J. Chem. Soc., 3872 (1964).
- 3. A.R. Lyons and M.C.R. Symons, Chem. Comm., 1068 (1971).

4921

- W. Hanstein, H.J. Berwin and T.G. Traylor, J. Amer. Chem. Soc., 92, 7476 (1970).
- P.W. Atkins and M.C.R. Symons, The Structure of Inorganic Radicals, Elsevier, Amsterdam, 1967.
- A.R. Lyons and M.C.R. Symons, <u>J. Amer. Chem. Soc</u>., to be published.